点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:创世大发 - 创世大发
首页>文化频道>要闻>正文

创世大发 - 创世大发

来源:创世大发2024-07-06 17:48

  

创世大发

围炉煮茶今冬最火 专家支招怎么煮才能更香更安全******

  冬日午后,约上三两好友,盘腿而坐,用陶炉点上炭火,架上铁网,静静煮上一壶茶,围着摆上橘子、番薯、年糕等各类瓜果零食,入冬的仪式感瞬间拉满。

  近日一股名为“围炉煮茶”的冬季养生潮流火了,惹得无数网友“打卡”:找角度拍美照发朋友圈,再精心配上文案,一口热茶下肚,整个人都暖暖的,这种既美味又极具意境的休闲方式,深受年轻人热捧。

  1月11日,江城专家提醒,“围炉煮茶”虽好,可一定要注意方法,否则可能会带来健康隐患。

  好友围炉煮茶相谈甚欢

  几个小时后却晕倒在地

  48岁的张先生(化姓)在外务工一年,近日回乡后,同村好友吴先生(化姓)特地买来好茶前来探望叙旧,相谈甚欢的两人在客厅一边围炉煮茶,一边烤着番薯、年糕。近3个小时后,回到家中的家人才发现,两人倒在地上,嘴角有呕吐物,呼之不应,于是赶紧呼叫救护车将他们送至长江航运总医院。

  到达医院时,张先生和吴先生神志昏迷,接诊的长江航运总医院康复医学科副主任医师孙莉高度重视,经详细询问家属,了解到意外发生时,虽客厅有开窗,但缝隙较小,现场有明显未燃尽的炭火及浓烈的炭火味。凭借高度的职业敏感,孙莉怀疑,他们可能是因不当围炉煮茶造成了一氧化碳中毒。

  为尽快明确诊断,孙莉建议立即为两名患者完善急诊碳氧血红蛋白、头部CT等检查,确诊为急性一氧化碳中毒(中度)合并中毒性脑病。时间就是大脑,孙莉团队及时给予了患者急救高压氧对症治疗,经1次治疗后患者意识状态均明显好转,后续遵医嘱经过足疗程的治疗后,目前已完全康复出院。

  无独有偶,上周末,24岁的张女士(化姓)和闺蜜相约在家里围炉煮茶,聊聊天,喝喝茶,红泥小火炉,气氛拉满。小姐妹们的话题怎么也聊不完,从天亮聊到了天黑,张女士突然觉得有些头晕、恶心,于是起身去卫生间,结果一到卫生间就吐了,等她吐完缓过劲来回到房间,发现好友已经昏倒在地了。她马上拨打了120急救电话,救护车将她们送至武汉市第六医院救治。该院高压氧治疗中心主任胡颖接诊后判断,二人均为一氧化碳中毒,这和两人在室内长时间围炉煮茶有关。

  室内围炉煮茶存隐患

  一定要注意开窗通风

  极目新闻记者看到,在网友“晒”出“围炉煮茶”的图片中,除了郊外露营、小院聚餐等室外空间,越来越多的人开始分享如何宅家“围炉煮茶”。有的邀请好友来到家中,有的一家三口围炉而坐,煮茶的场所则是客厅、阳台甚至卧室。而在评论区的一片羡慕声中,也有网友说出疑虑:“在家烧炭不会一氧化碳中毒吗?”“我也喜欢这样的氛围,但担心室内烧炭不安全。”

  毋庸置疑,炭火是围炉煮茶的核心,但使用炭火,却暗藏着不少健康隐患。1月11日,极目新闻记者采访长江航运总医院、武汉市第六医院等江城多家医院了解到,每到寒冬季节,因在室内不当烤火取暖导致的一氧化碳中毒患者数量都会明显增加,今年冬季因在室内围炉煮茶而引发一氧化碳中毒的病例也显著增多。

  武汉市第六医院高压氧治疗中心主任胡颖介绍,含碳的物质不完全燃烧时会产生一氧化碳,它是一种无色无味的气体,可以通过呼吸进入人体。人体内绝大部分的氧是通过与血液中的血红蛋白结合来运输的,但由于一氧化碳与血红蛋白的亲和力是氧气的200多倍,所以一旦它进入血液就会迅速抢占血红蛋白。氧气失去了运输工具,机体就会缺氧,缺氧加上一氧化碳蓄积引起的机体中毒反应,随之产生一系列症状,就是一氧化碳中毒的原理。

  胡颖指出,由于一氧化碳无色无味,所以一氧化碳中毒一般都是悄无声息地发生。轻度中毒患者会出现头痛、头晕、恶心、呕吐、短暂昏厥,血中碳氧血红蛋白含量达10%至20%;中度中毒患者,除上述症状加重外,还会出现多汗、心率加速、烦躁、嗜睡、昏迷,血中碳氧血红蛋白约在30%至40%;重度中毒患者则会陷入昏迷状态,引起多器官功能衰竭,并发症和后遗症的概率很高,严重的会导致死亡。

  长江航运总医院康复医学科副主任医师孙莉表示,在室内围炉煮茶活动并不安全。因为室内空间比较狭小,特别是在门窗都关闭的情况下,由于炉火燃烧不充分导致产生的一氧化碳无法很好地排出,极容易引发一氧化碳中毒。她提醒,使用炭火的时候一定要尽量让炭火充分燃烧,特别是在室内围炉煮茶时,切记一定要注意开窗通风,即使是使用无烟炭,也必须要开窗且开窗缝隙不可太小,保持空气流通。

  选择茶饮方别盲目跟风

  维C丰富水果烤制应适度

  除了安全,如何喝得健康也是不少围炉煮茶爱好者关注的重点。其实“新晋顶流”围炉煮茶,并不是什么新鲜事物。煮茶是中国的传统艺术之一,但如今人们对煮茶有了更多需求:既要养生,又要兼顾口感,为此壶中的茶饮方则显得格外重要。

  那些茶适合围炉煮茶?长江航运总医院营养科何艳副主任医师介绍,适合煮的茶主要有以下三种:一是工艺到位的岩茶,因茶叶内质丰厚而适合煮茶,如野生岩茶、老枞水仙、肉桂等岩茶。岩茶蕴含丰富的矿物质元素,有机质含量高,高温煮茶时,茶汤中浸出物增加,人体能吸收更多茶叶中的营养物质;二是年份长的茶,例如老白茶、普洱茶、传统工艺制作的铁观音等。这类老茶经过时间沉淀,产生浓郁的“沉香”,内敛而饱满,令人回味;三是发酵重的茶叶,如黑茶、熟洱、老茶头、红茶等。这类发酵程度高的茶叶,滋味醇厚,适宜煮茶。特别是红茶除了清饮,加入牛奶用来煮调饮也是别有一番风味。

  她指出,不适合煮的茶一般有绿茶、黄茶、花茶等。因为它们喝的就是新鲜。如果用来煮,过高的水温反而会破坏鲜嫩的茶味,使咖啡碱析出过多,味道苦涩。比如花茶放入水中煮沸,会丧失其原有的色、香、味,损失大部分营养成分,因此一般建议冲泡饮用。茶饮方的选择应结合个人喜欢、茶本身的特质以及药理等诸多方面来综合选择,不能盲目跟风,更不能随意自制,以免养生不成反而伤身。

  对吃货朋友而言,现代版的“围炉煮茶”,茶并非主角,各式各样的茶点最让人心心念念,尤其是烤水果:烤柿子、烤甘蔗……拨开清香扑鼻的果皮,将温热的果肉送入口中,简直甜到心坎里。水果在加热后是否会损失很多营养,对身体造成影响?

  何艳表示,冬季寒冷天气干燥,呼吸系统不适高发,围炉煮茶时确实可以配合一些烤水果,比如橘子、甘蔗等。水果里面有相当一部分有益于健康的营养成分,都存在于果皮之上。如果在吃水果时能把果皮用火烤一烤,就可以把水果皮上有益于健康的成分,烤进果肉中。例如,鲜橘子火烤之后就有了陈皮水的效果,如果喉咙不舒服,吃完之后能起到一定的化痰作用。但需要注意的是,含维生素C丰富的水果尽量不要长时间烘烤,只要烤制适度,营养成分的损失是微乎其微的。(周珊 刘望)

科学家成功合成铹的第14个同位素******

  超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。

  超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。

  近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。

  此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。

  不断进行探索,再次合成铹同位素

  铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。

  质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。

  103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。

  截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。

  目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。

  通过熔合反应,形成新的原子核

  铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。

  “仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。

  在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。

  “如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。

  超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。

  拓展新的领域,推动超重核理论研究

  由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。

  此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。

  研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。

  “此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌)

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 许志安华语榜中榜惨被除名 杨千嬅捧双料大奖被赞实至名归

  • “五一”假期四天收费公路全部免费通行

独家策划

推荐阅读
创世大发 防晒喷雾使用需谨慎,不能直接喷脸!
2024-08-19
创世大发死党移居国外买壕气别墅 客厅可赏180°无敌美景
2024-07-21
创世大发 连媒:一方战国安彻头彻尾失利
2025-01-04
创世大发杨紫为张一山送画却被嘲脸大
2024-04-21
创世大发还嫌大蒜"重口味"?可人家除了防癌还能防止记忆衰退
2024-12-25
创世大发Axure8.0产品经理(全集)
2024-06-05
创世大发近300股跌停!沪指跌0.77%,创业板指暴跌2.55%
2024-09-20
创世大发涉案2.3亿 《流浪地球》等8部电影被盗版案告破
2024-12-04
创世大发上海民校为何受家长“热捧”?
2025-01-10
创世大发中国最强小学生背后,有一个所有篮球少年都羡慕的老爸
2024-05-25
创世大发奔驰4S店员工试车撞人 车主"躺枪":凭啥要我出保险
2024-04-20
创世大发 美大使挟双航母之威喊话俄罗斯 莫斯科震怒:我能让它变废铁
2024-07-03
创世大发鸿门宴上刘邦逃脱谁出力大
2024-09-24
创世大发 黄景瑜出席活动 黑色套装利落帅气
2024-10-02
创世大发粤网文【2017】6527-1578号
2024-09-01
创世大发数据安全产业规模迅速扩大 2025年将超1500亿元
2024-05-02
创世大发刘诗诗新剧真的很赶客
2024-12-06
创世大发“五个必由之路”的科学内涵与重大意义
2024-06-08
创世大发斯里兰卡总统下令禁穿罩袍面纱:为确保国家安全
2024-07-01
创世大发问道3799浮生若梦至尊礼包
2024-04-14
创世大发县人社局副局长被查后 基层医疗机构46人自首退赃
2024-11-26
创世大发李昊桐大师赛第三轮集锦 2鸟3柏忌推杆欠佳
2024-05-28
创世大发广电总局电视剧司负责人就《“十四五”中国电视剧发展规划》答记者问
2024-11-09
创世大发包贝尔带女儿走红毯 饺子涂红唇戴皇冠似公主
2024-05-01
加载更多
创世大发地图

科普一下给大家盘点一下分享一下我来科普一下玩家必看科普官方科普攻略科普推荐让我来给大家科普资讯热点